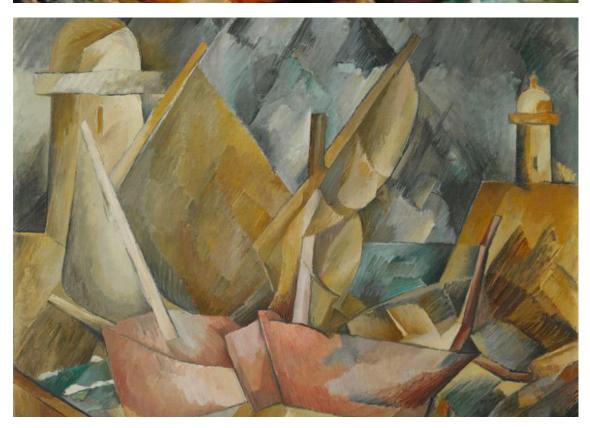
The Peculiar Optimization and Regularization Challenges in Multi-Task Learning and Meta-Learning

Chelsea Finn

training data Braque Cezanne







test datapoint

By Braque or Cezanne?

How did you accomplish this?

Through previous experience.

- Modeling image formation Geometry SIFT features, HOG features + SVM Fine-tuning from ImageNet features Domain adaptation from other painters <u>;;;</u>

How might you get a machine to accomplish this task?

Fewer human priors, more data-driven priors Greater success.

Can we explicitly learn priors from previous experience that lead to efficient downstream learning?

Can we learn to learn?

Outline

- 1. Brief overview of meta-learning
- 2. A peculiar yet ubiquitous problem in meta-learning
- 3. Can we scale meta-learning to broad task distributions?

(and how we might regularize it away)

How does meta-learning work? An example.

Given 1 example of 5 classes:

training data $\mathcal{D}_{ ext{train}}$

Classify new examples

test set \mathbf{x}_{test}

How does meta-learning work? An example.

Given 1 example of 5 classes:

training data \mathcal{D}_{train}

meta-testing

 $\mathcal{T}_{ ext{test}}$

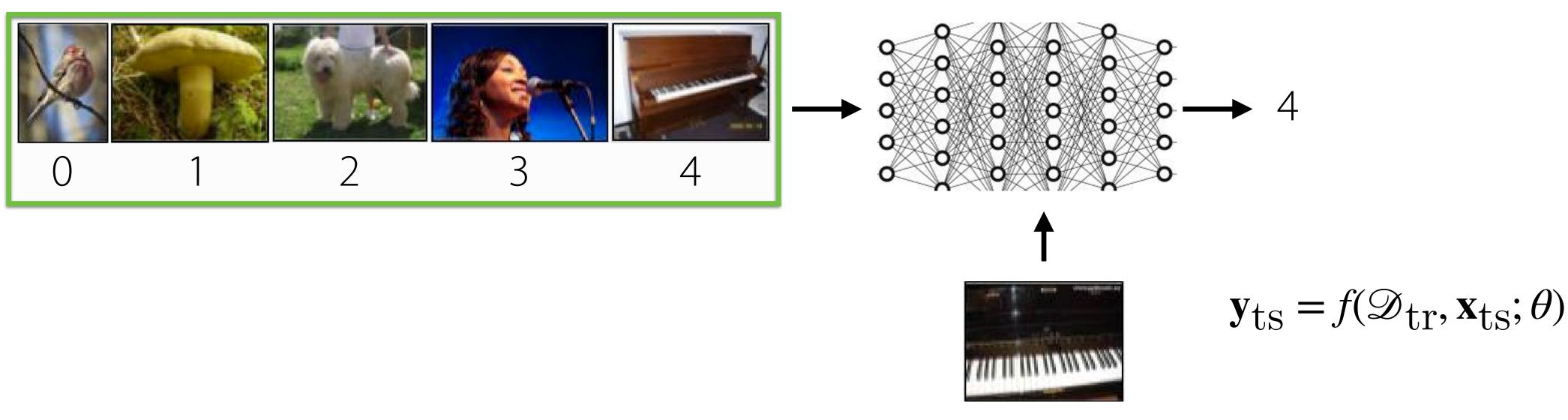
training classes

Classify new examples

test set \mathbf{X}_{test}

How does meta-learning work?

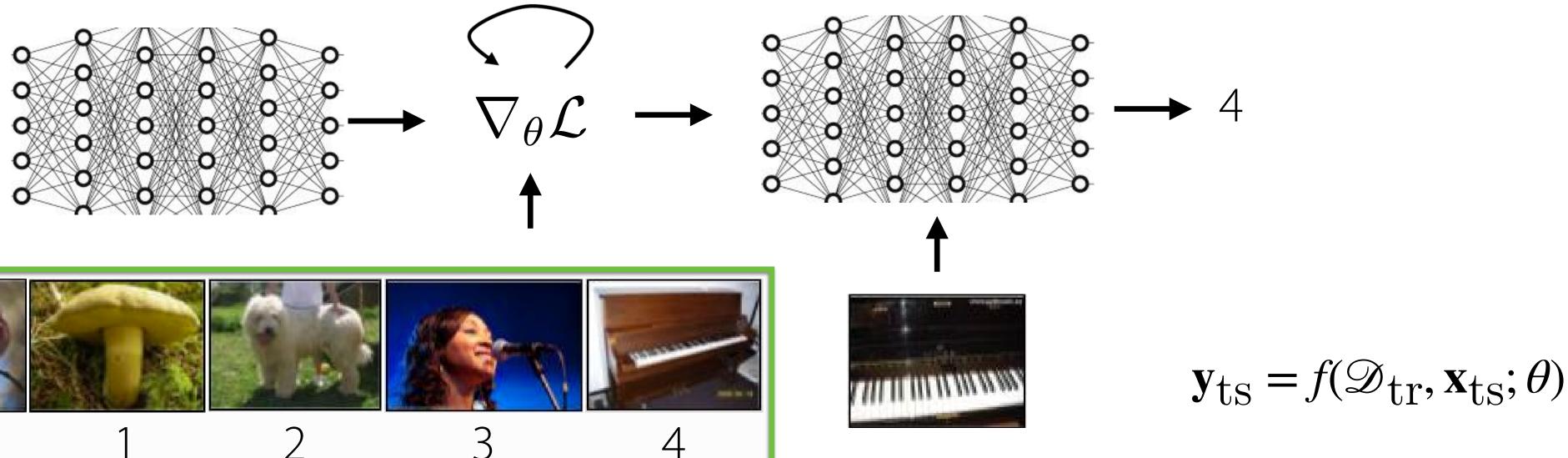
One approach: parameterize learner by neural network

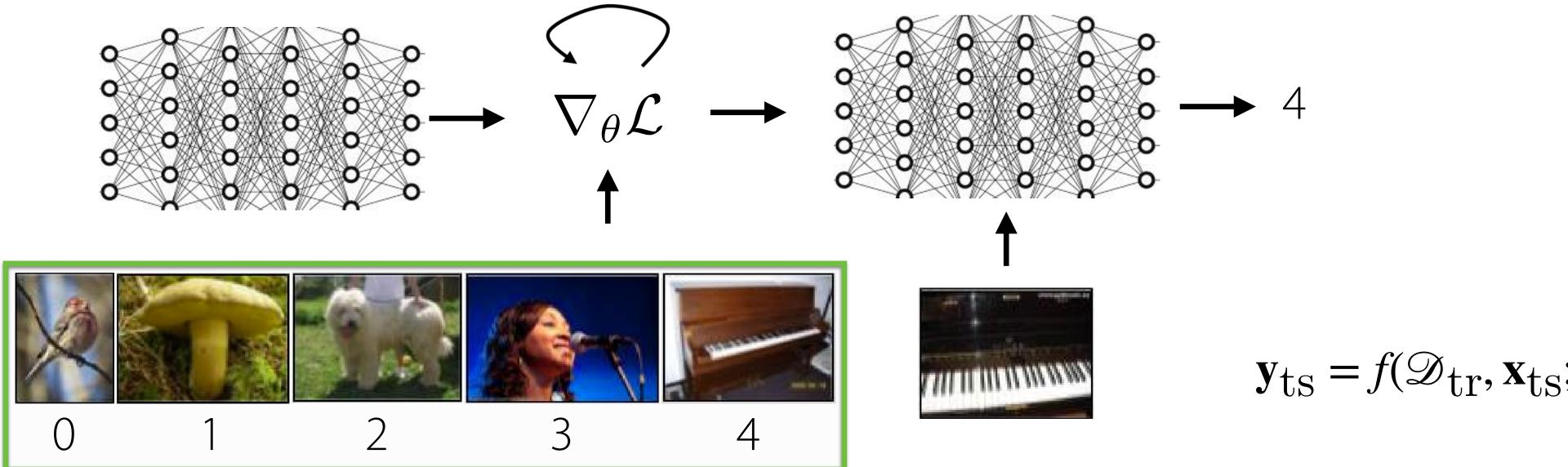


(Hochreiter et al. '91, Santoro et al. '16, many others)

How does meta-learning work?

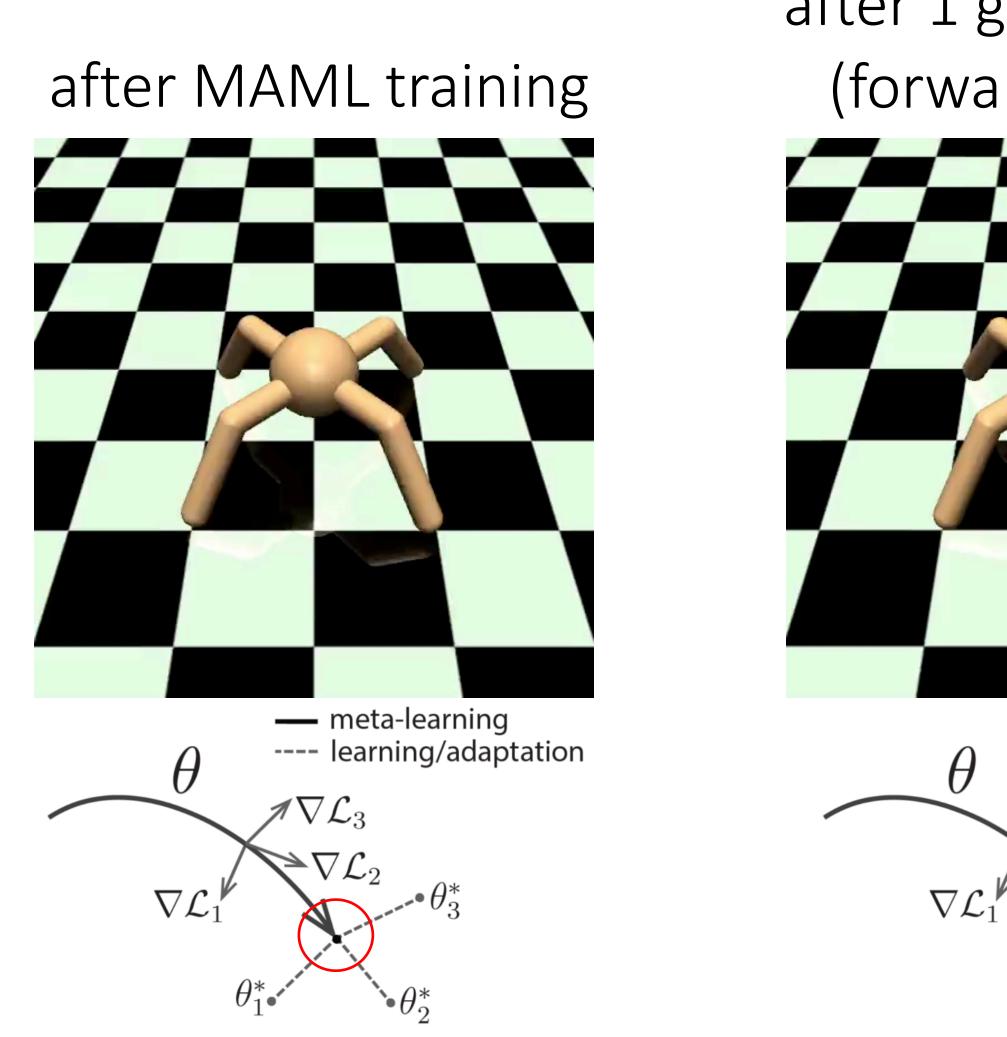
Another approach: embed optimization inside the learning process





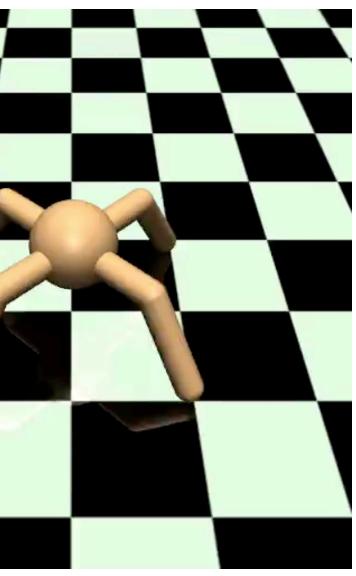
(Maclaurin et al. '15, Finn et al. '17, many others)

Can we learn a representation under which RL is fast and efficient?

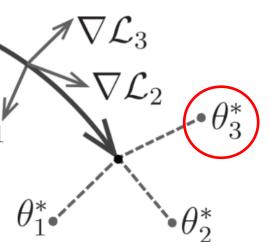


Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML'17

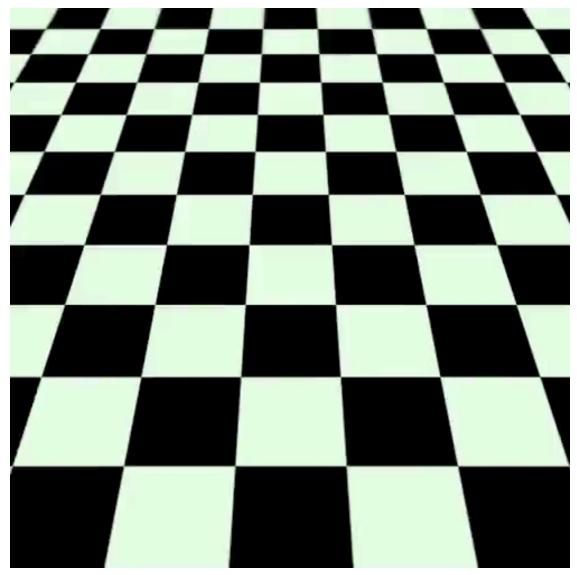
after 1 gradient step (forward reward)



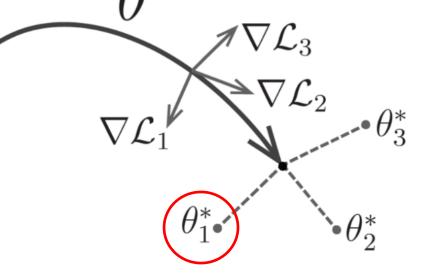
meta-learning
---- learning/adaptation



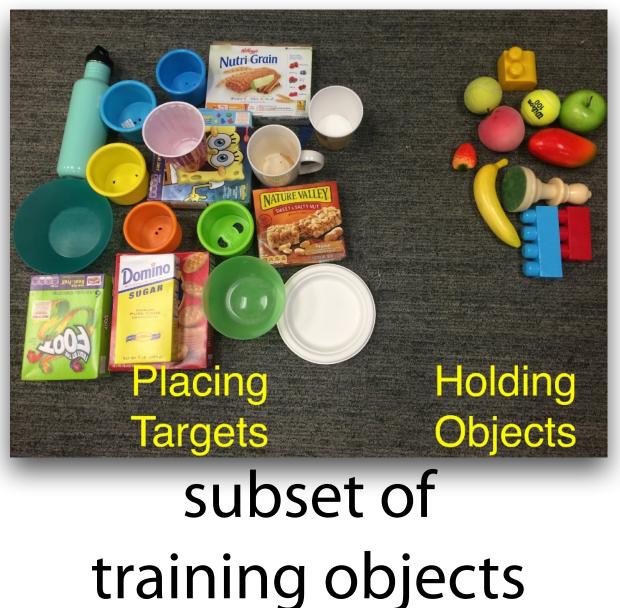
after 1 gradient step (backward reward)



— meta-learning ---- learning/adaptation

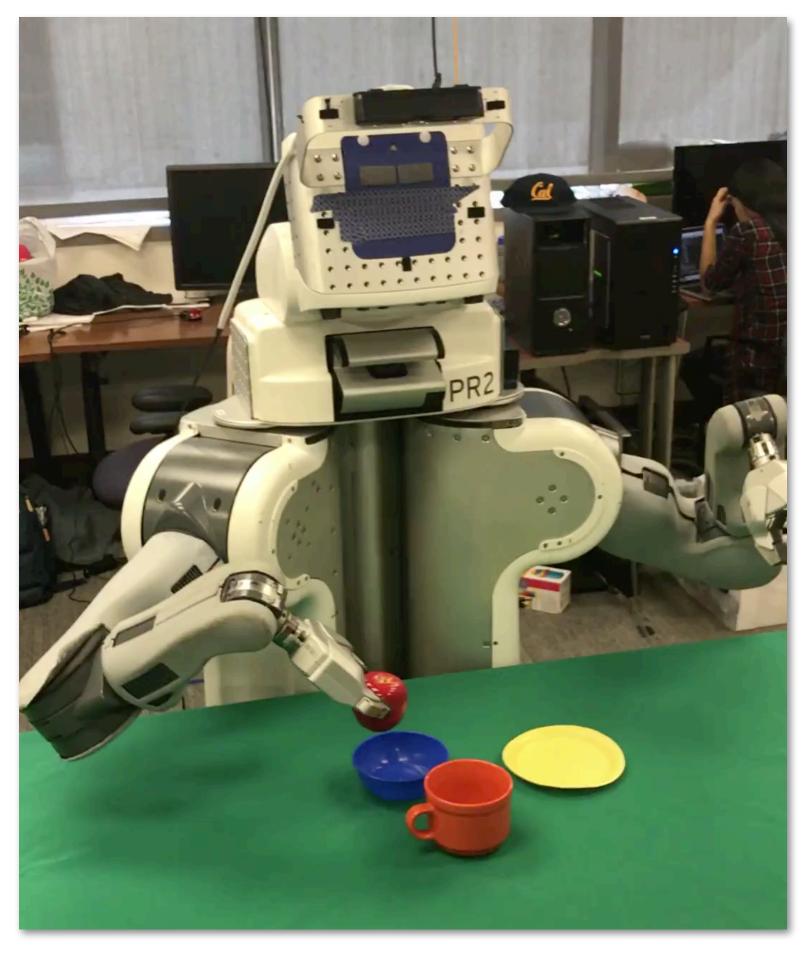


Can we learn a representation under which imitation is fast and efficient? input demo resulting policy (via teleoperation)

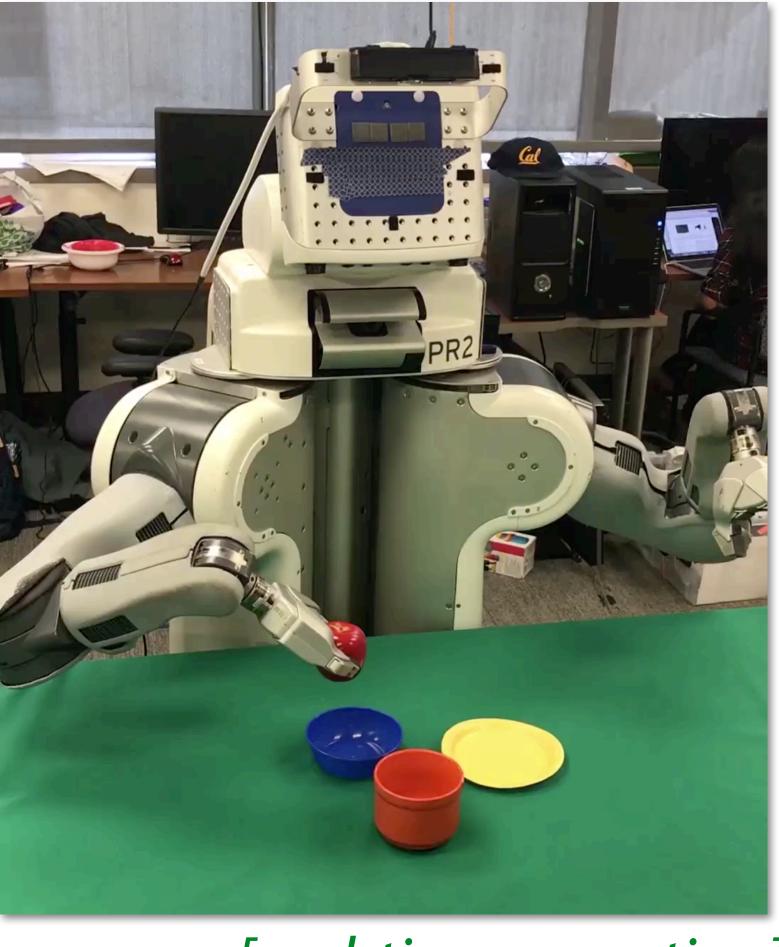


Holding Placing Targets Objects

held-out test objects

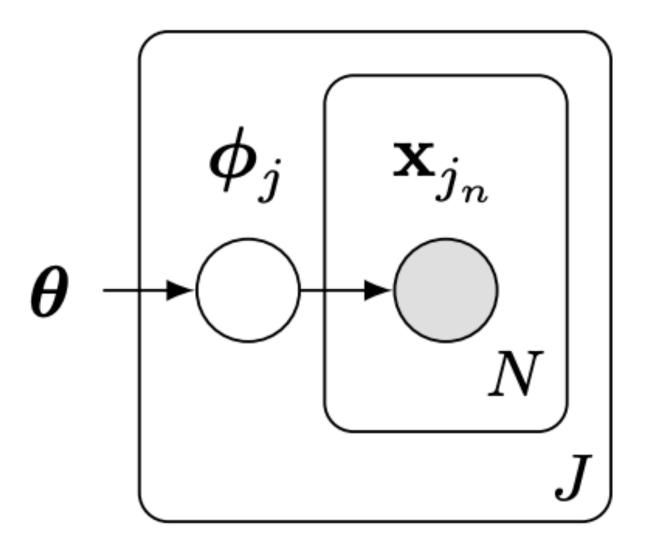


Finn*, Yu*, Zhang, Abbeel, Levine. One-Shot Visual Imitation Learning via Meta-Learning. CoRL '17



[real-time execution]

The Bayesian perspective



meta-learning <~> learning priors $p(\phi \mid \theta)$ from data

(Grant et al. '18, Gordon et al. '18, many others)

Outline

1. Brief overview of meta-learning

2. A peculiar yet ubiquitous problem in meta-learning

3. Can we scale meta-learning to broad task distributions?

- (and how we might regularize it away)

How we construct tasks for meta-learning.

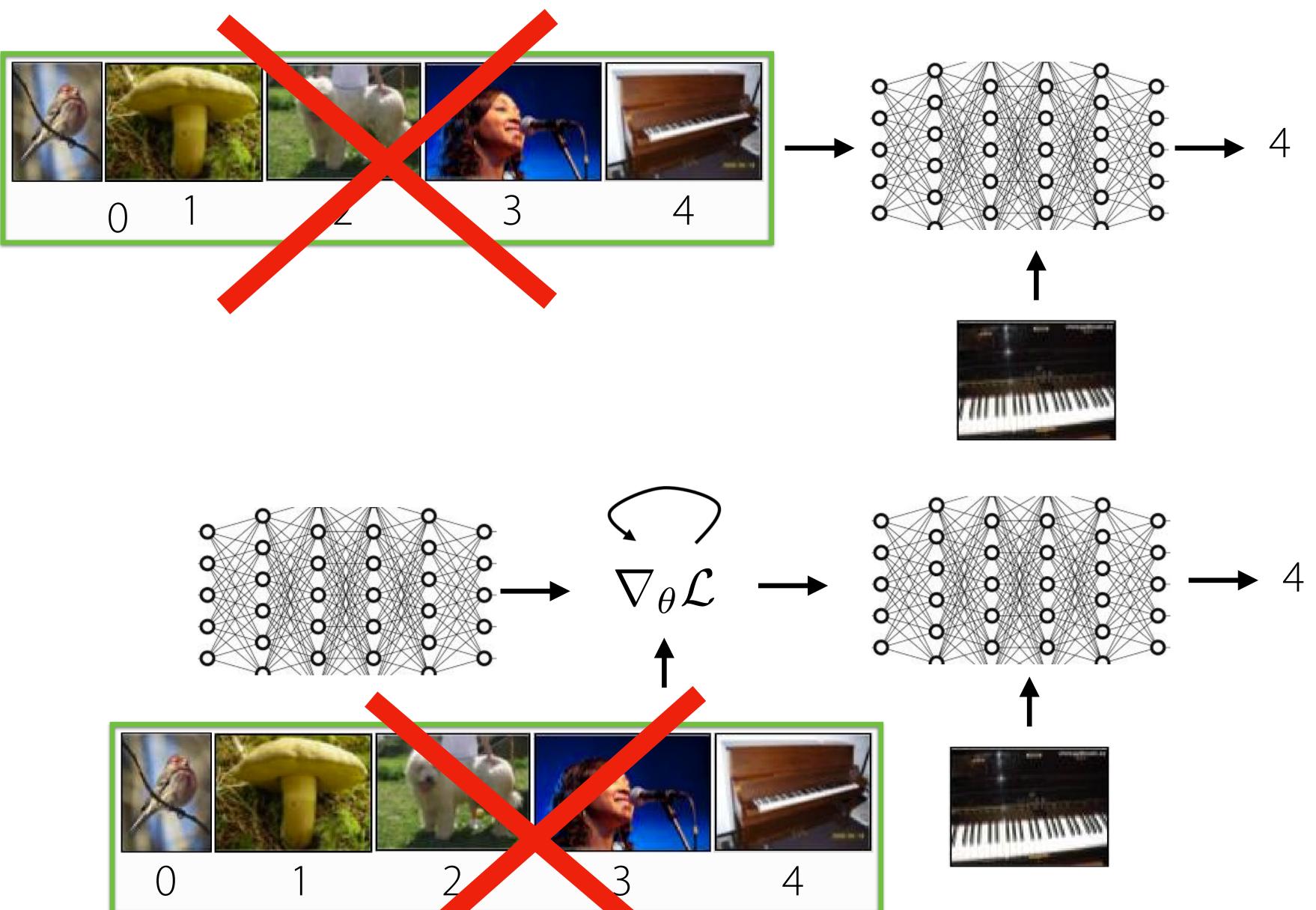
Randomly assign class labels to image classes for each task \longrightarrow Tasks are mutually exclusive. Algorithms **must** use **training data** to infer label ordering.

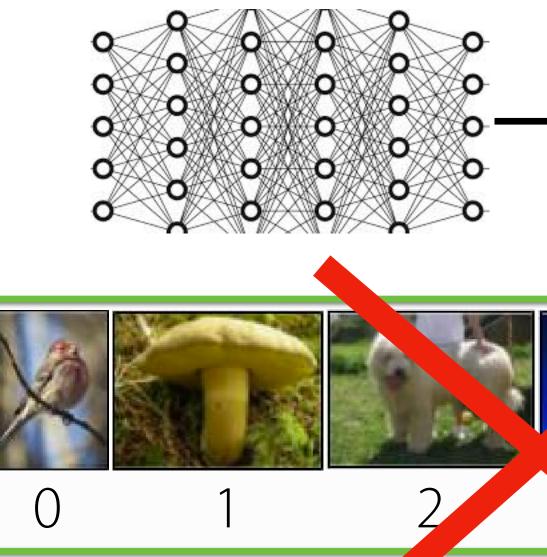
What if label order is consistent?

The network can simply learn to classify inputs, irrespective of $\mathscr{D}_{\mathrm{tr}}$

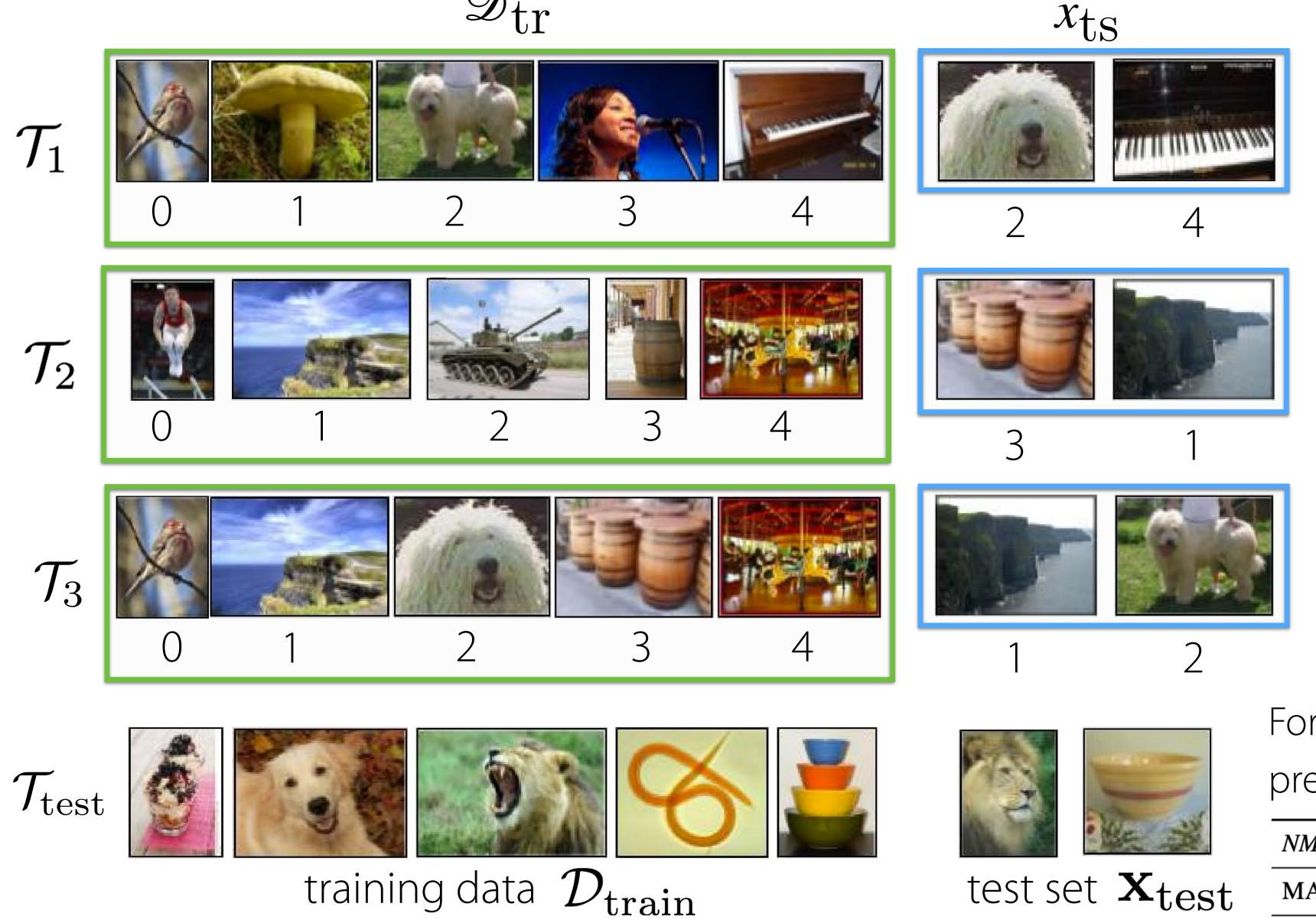
Tasks are **non-mutually exclusive**: a single function can solve all tasks.

The network can simply learn to classify inputs, irrespective of $\mathscr{D}_{\mathrm{tr}}$





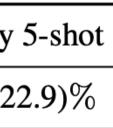
What if label order is consistent?



test set \mathbf{x}_{test}

For new image classes: can't make predictions w/o $\mathscr{D}_{\mathrm{tr}}$

NME Omniglot	20-way 1-shot	20-way		
MAML	7.8 (0.2)%	50.7 (22		

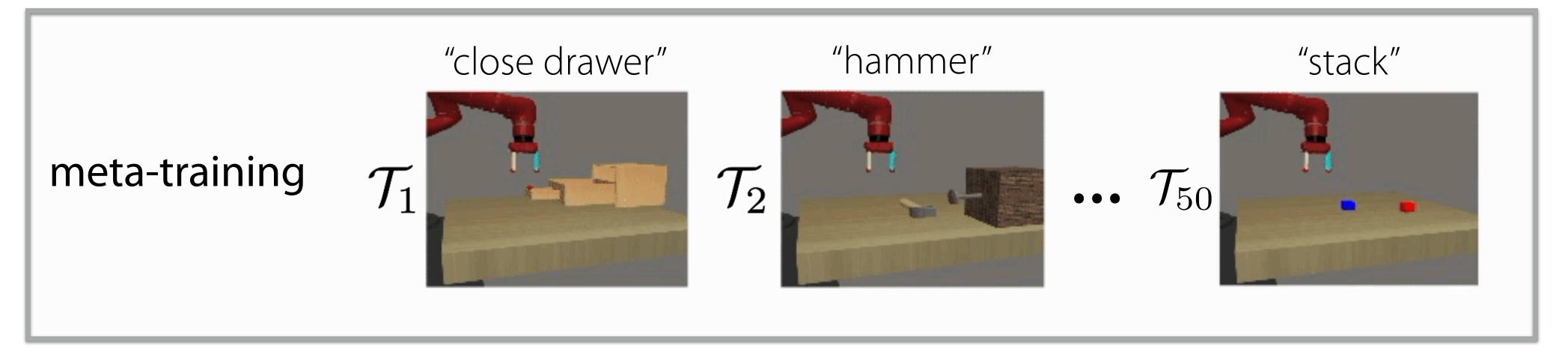


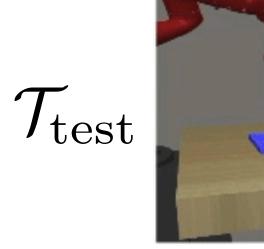
Is this a problem?

- No: for image classification, we can just shuffle labels*
- meta-test time)
- But, yes, if we want to be able to adapt with data for new tasks.

- No, if we see the same image classes as training (& don't need to adapt at

Another example

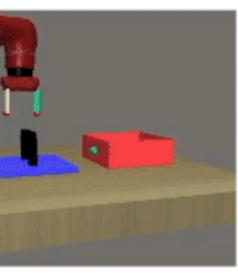




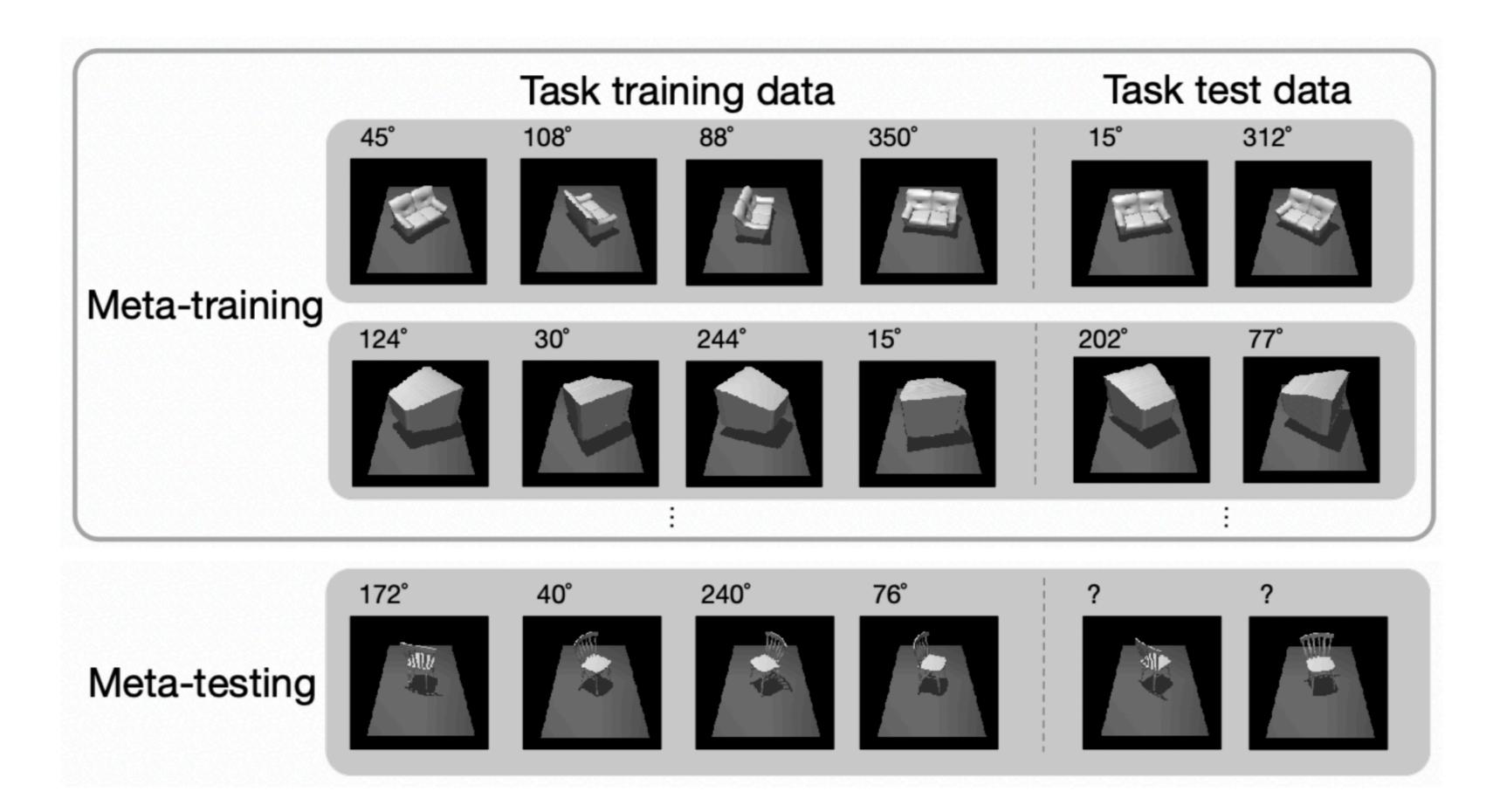
If you tell the robot the task goal, the robot can **ignore** the trials.

TYu, D Quillen, Z He, R Julian, K Hausman, C Finn, S Levine. *Meta-World*. CoRL'19

"close box"



Another example



Model can memorize the canonical orientations of the training objects.

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19

Can we do something about it?

multiple solutions to the meta-learning problem

One solution:

Another solution:

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19

- **If tasks** *mutually exclusive***:** single function cannot solve all tasks (i.e. due to label shuffling, hiding information)
- If tasks are non-mutually exclusive: single function can solve all tasks

$$y^{\mathrm{ts}} = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}})$$

- memorize canonical pose info in θ & ignore $\mathscr{D}_{i}^{\mathsf{Tr}}$
- carry no info about canonical pose in θ , acquire from $\mathscr{D}_i^{\mathrm{tr}}$
- An entire **spectrum of solutions** based on how **information** flows.
 - Suggests a potential approach: control information flow.

If tasks are non-mutually exclusive: single function can solve all tasks *multiple solutions* to the meta-learning problem

One solution: Another solution:

Meta-regularization

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19

$$y^{\mathrm{ts}} = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}})$$

- memorize canonical pose info in θ & ignore $\mathscr{D}_i^{\mathrm{Tr}}$ carry no info about canonical pose in θ , acquire from $\mathscr{D}_i^{\mathrm{tr}}$ An entire **spectrum of solutions** based on how **information** flows.
 - one option: max $I(\hat{\mathbf{y}}_{ts}, \mathcal{D}_{tr} | \mathbf{x}_{ts})$
 - minimize meta-training loss + information in θ
 - $\mathscr{L}(\theta, \mathscr{D}_{meta-train}) + \beta D_{KL}(q(\theta; \theta_{\mu}, \theta_{\sigma}) \| p(\theta))$
- Places precedence on using information from $\mathscr{D}_{\mathrm{tr}}$ over storing info in heta. Can combine with your favorite meta-learning algorithm.

Omniglot without label shuffling: "non-mutually-exclusive" Omniglot

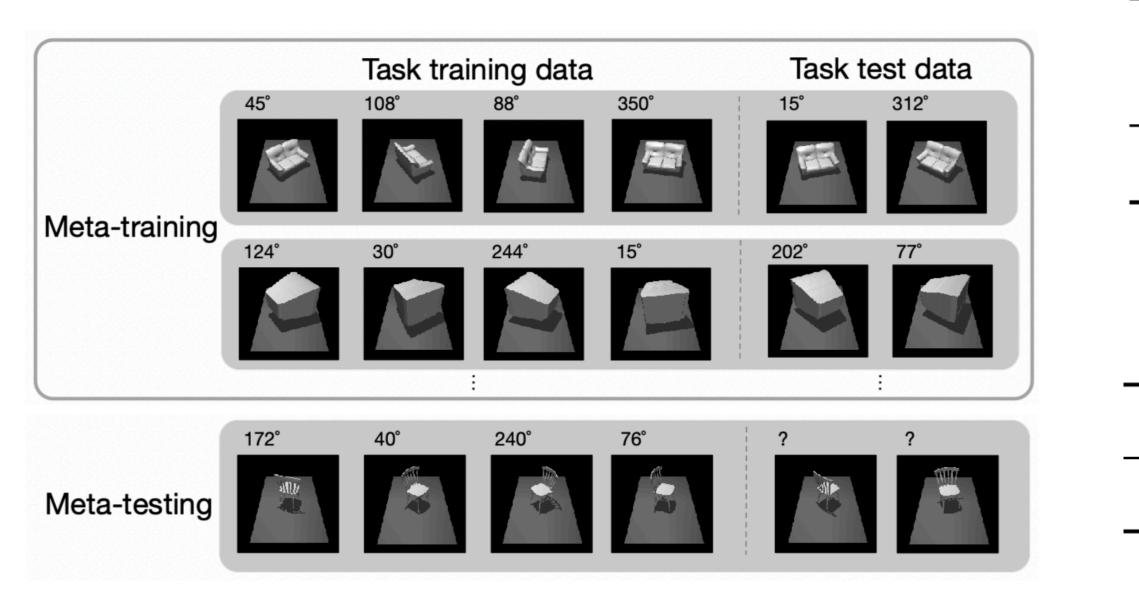
NME Omniglot

MAML

TAML

MR-MAML (W) (ours)

On **pose prediction** task:



TAML: Jamal & Qi. Task-Agnostic Meta-Learning for Few-Shot Learning. CVPR'19 Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19

	20-way 1-shot	20-way 5-shot
	7.8~(0.2)%	50.7~(22.9)%
	9.6~(2.3)%	67.9~(2.3)%
)	83.3 (0.8) %	94.1 (0.1) %

Method	MAML	MR-MAML(W) (ours)	CNP	MR-CNP (ours)	
MSE	5.39 (1.31)	2.26 (0.09)	8.48 (0.12)	2.89 (0.1	

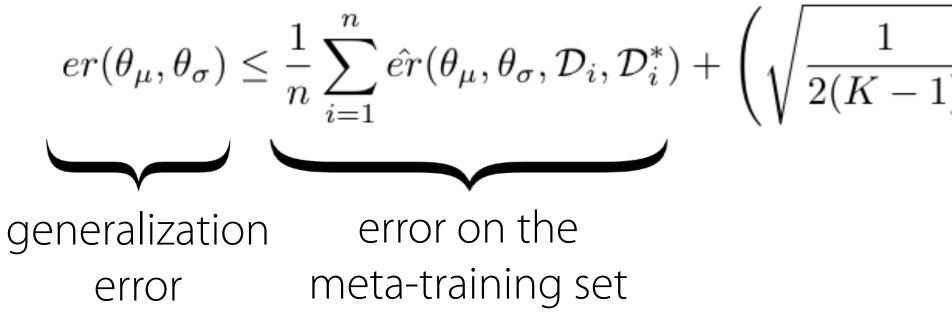
(and it's not just as simple as standard regularization)

CNP	CNP + Weight Decay	CNP + BbB	MR-CNP (W) (c
8.48 (0.12)	6.86 (0.27)	7.73 (0.82)	2.89 (0.18)

Does meta-regularization lead to better generalization?

Let $P(\theta)$ be an arbitrary distribution over θ that doesn't depend on the meta-training data. (e.g. $P(\theta) = \mathcal{N}(\theta; \mathbf{0}, \mathbf{I})$)

For MAML, with probability at least $1-\delta$,



With a Taylor expansion of the RHS + a particular value of $\beta \longrightarrow \frac{recover the MR MAML objective}{recover}$.

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19

$$\frac{1}{1)} + \sqrt{\frac{1}{2(n-1)}} \sqrt{D_{KL}(\mathcal{N}(\theta;\theta_{\mu},\theta_{\sigma}) \| P)} + \log \frac{n(K+1)}{\delta},$$

meta-regularization $\forall \theta_{\mu}, \theta_{\sigma}$

Proof: draws heavily on Amit & Meier '18

2. A peculiar yet ubiquitous problem in meta-learning

meta overfitting

memorize training functions f_i corresponding to tasks in your meta-training dataset

meta regularization controls information flow regularizes description length of meta-parameters

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19

(and how we might regularize it away)

Intermediate Takeaways

standard overfitting memorize training datapoints (x_i, y_i) in your training dataset

standard regularization regularize hypothesis class (though not always for DNNs)

Outline

- 1. Brief overview of meta-learning
- 2. A peculiar yet ubiquitous problem in meta-learning
- 3. Can we scale meta-learning to broad task distributions?

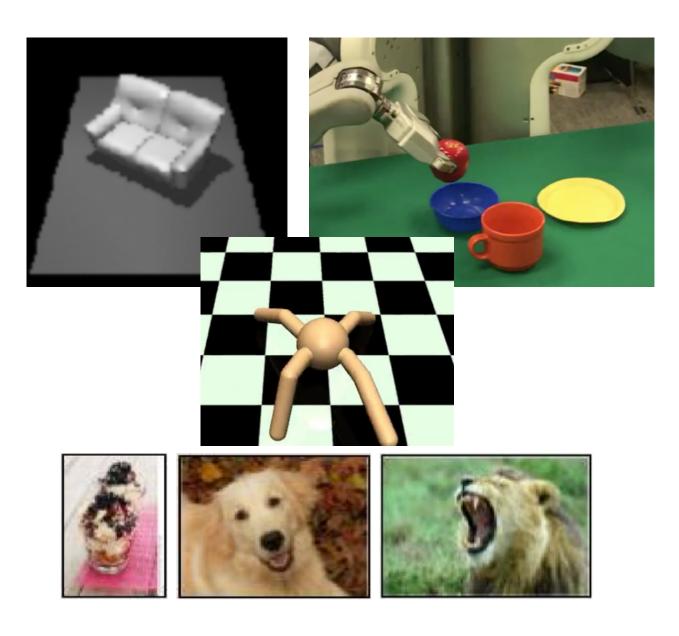
(and how we might regularize it away)

Can adapt to: - new objects

- new goal velocities

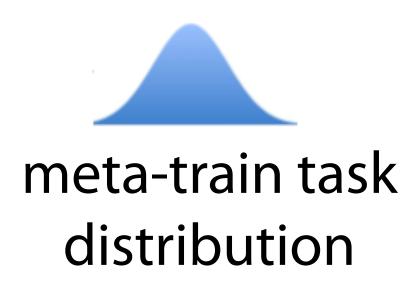
- new object categories

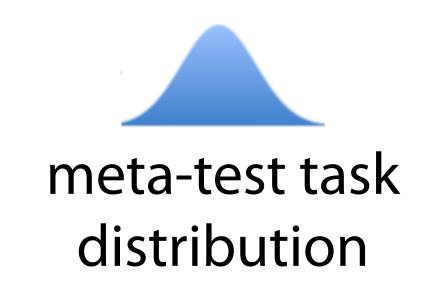
Has meta-learning accomplished our goal of making adaptation fast? Sort of...



Can we adapt to entirely *new* tasks or datasets?

Can we adapt to entirely *new* tasks or datasets?





Can we look to RL benchmarks?

Brockman et al. OpenAl Gym. 2016

Bellemare et al. Atari Learning Environment. 2016

—> Need **broad** distribution of tasks for meta-training

Fan et al. SURREAL: Open-Source Reinforcement Learning Framework and Robot Manipulation Benchmark. CoRL 2018

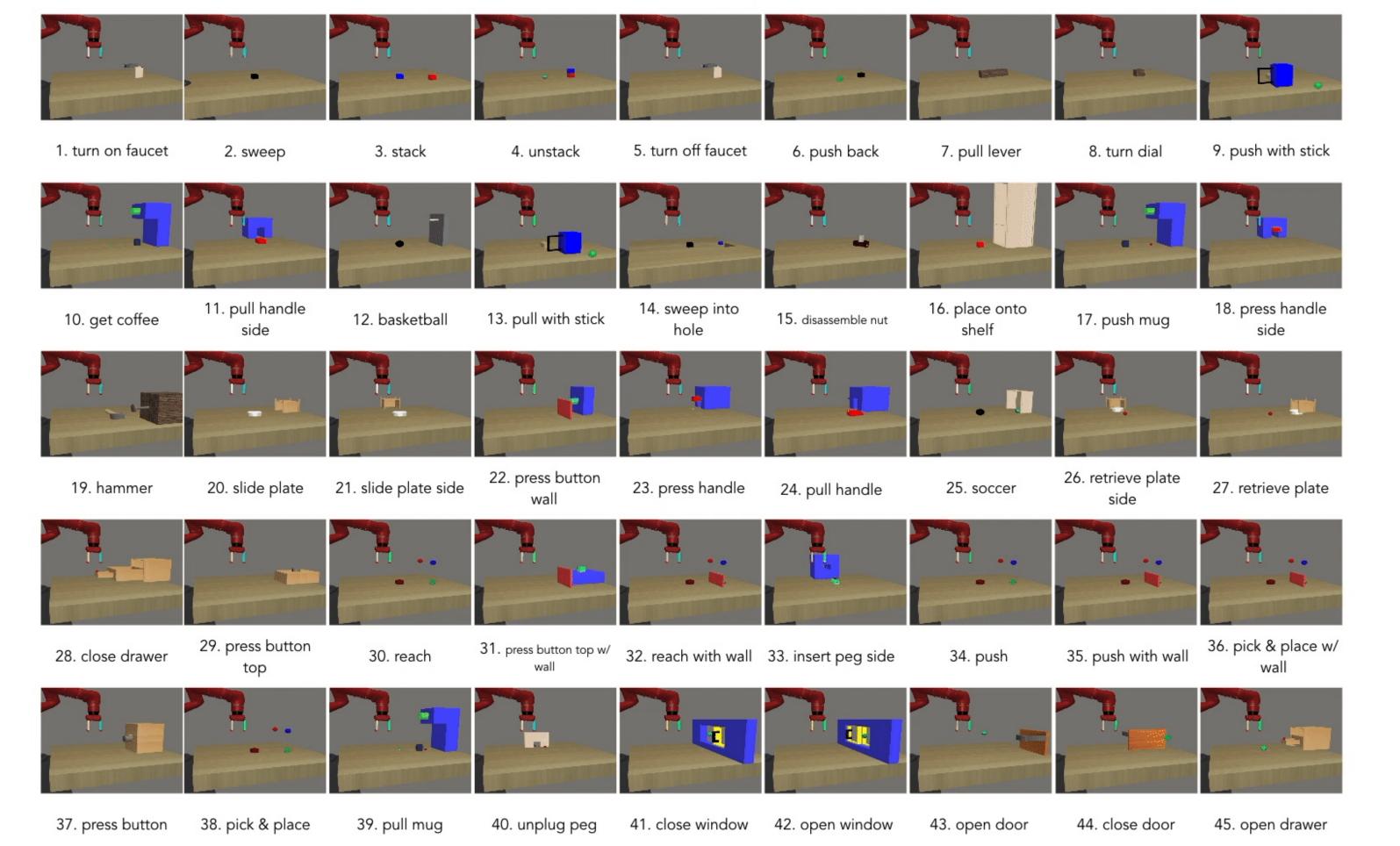
Our desiderata

50+ qualitatively distinct tasks

shaped reward function & success metrics

All tasks individually solvable (to allow us to focus on multitask / meta-RL component)

Unified state & action space, environment (to facilitate transfer)

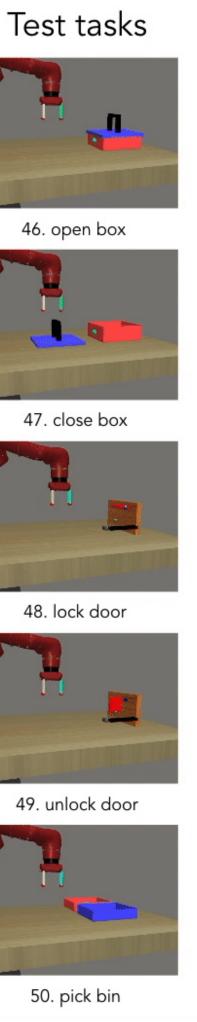


TYu, D Quillen, Z He, R Julian, K Hausman, C Finn, S Levine. Meta-World. CoRL '19

Train tasks

50. pick bin

Meta-World Benchmark



Results: Meta-learning algorithms seem to struggle...

Methods

MAML RL^2 PEARL

Multi-task RL algorithms *also* struggle...

Methods

Multi-task PF Multi-task TR Task embeddi Multi-task SA Multi-task multi-he

TYu, D Quillen, Z He, R Julian, K Hausman, C Finn, S Levine. Meta-World. CoRL'19

ML45

meta-train meta-test

... even on the 45 meta-training tasks!

	MT50	
PO	8.98%	
RPO	22.86%	
ngs	15.31%	
AČ	28.83%	
ead SAC	35.85%	

Exploration challenge?

Data scarcity?

Limited model capacity?

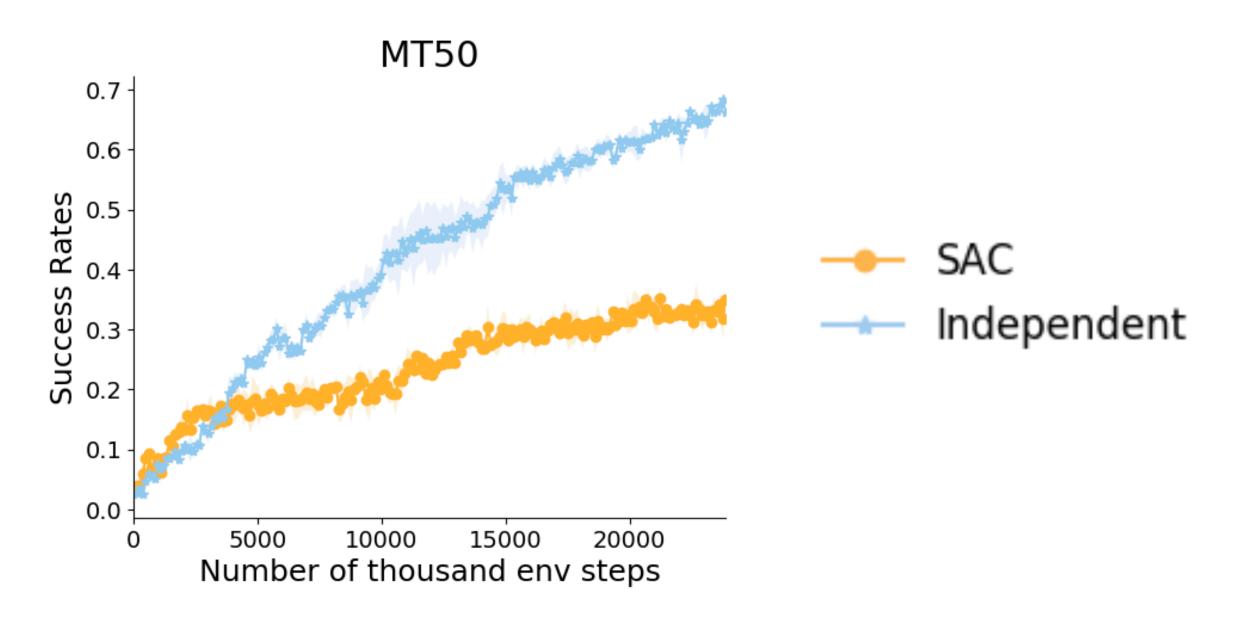
Training models *independently* performs the best.

Why the poor results?

All tasks individually solvable.

All methods given budget with plenty of samples.

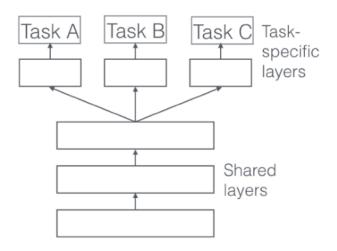
All methods plenty of capacity.



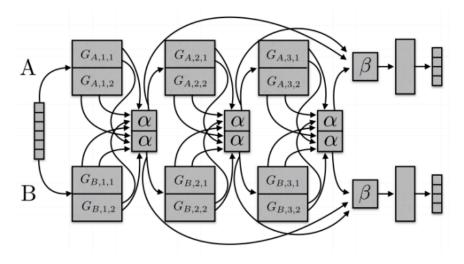
Our conclusion: must be an *optimization* challenge.

Prior literature on multi-task learning

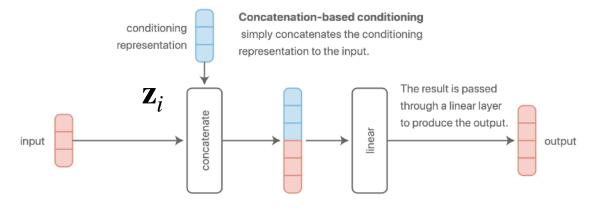
Architectural solutions:



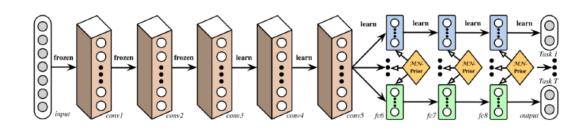
Multi-head architectures



Augenstein, Sogaard '17



FiLM: Visual Reasoning with a General *Conditioning Layer*. Perez et al. '17

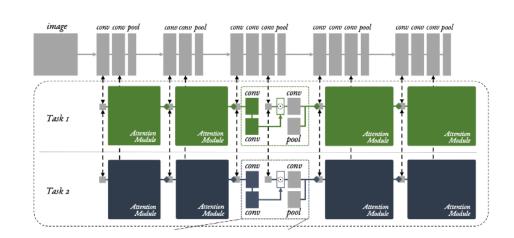


Deep Relation Networks. Long, Wang '15

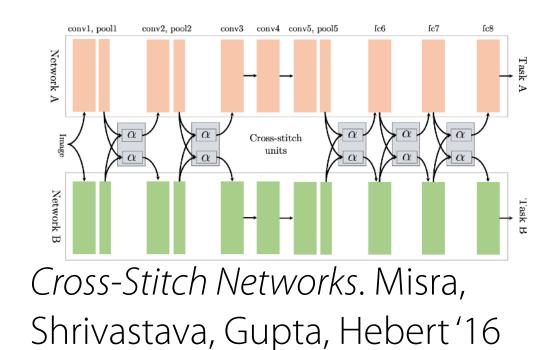
Task weighting solutions:

 $L_{\text{tot}} = w_{\text{depth}} L_{\text{depth}} + w_{\text{kpt}} L_{\text{kpt}} + w_{\text{normals}} L_{\text{normals}}$ GradNorm. Chen et al. '18

Sluice Networks. Ruder, Bingel,



Multi-Task Attention Network. Liu, Johns, Davison '18



$$\min_{\substack{\boldsymbol{\theta}^{sh},\\ \boldsymbol{\theta}^{1},\ldots,\boldsymbol{\theta}^{T}}} \quad \sum_{t=1}^{T} c^{t} \hat{\mathcal{L}}^{t}(\boldsymbol{\theta}^{sh},\boldsymbol{\theta}^{t})$$

MT Learning as Multi-Objective Optimization. Sener & Koltun. '19

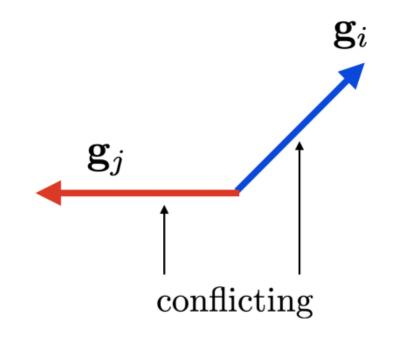
If so: would see negative inner product of gradients

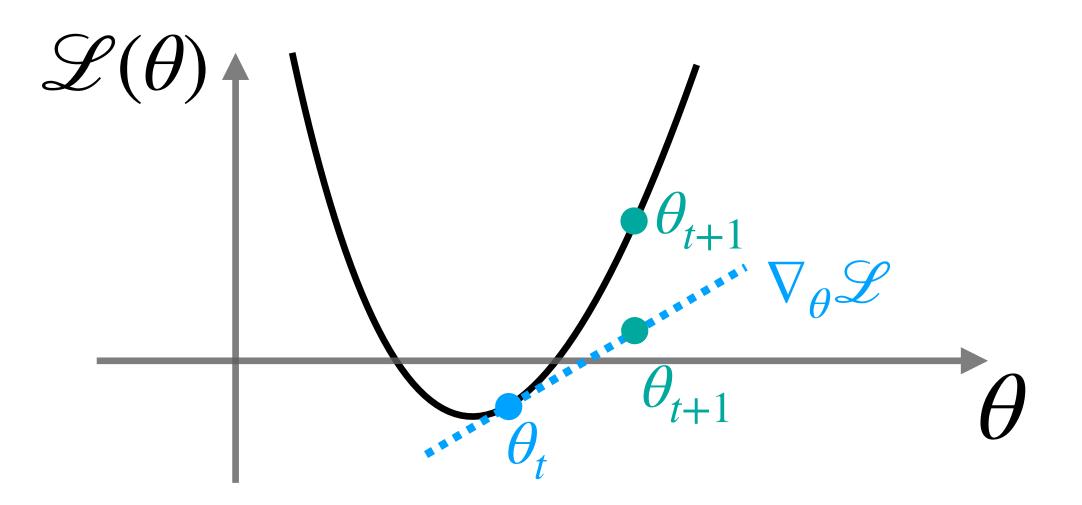
Hypothesis 2: When they do conflict, they cause more damage than expected.

i.e. due to high curvature & difference in grad magnitude

TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning. '19

Hypothesis 1: Gradients from different tasks often conflict



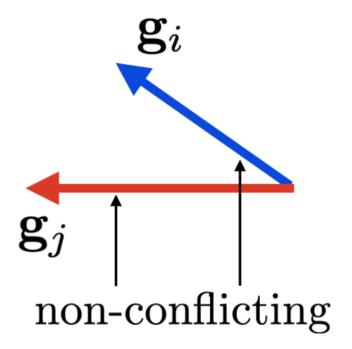


Idea: try to avoid making other tasks worse, when taking gradient step

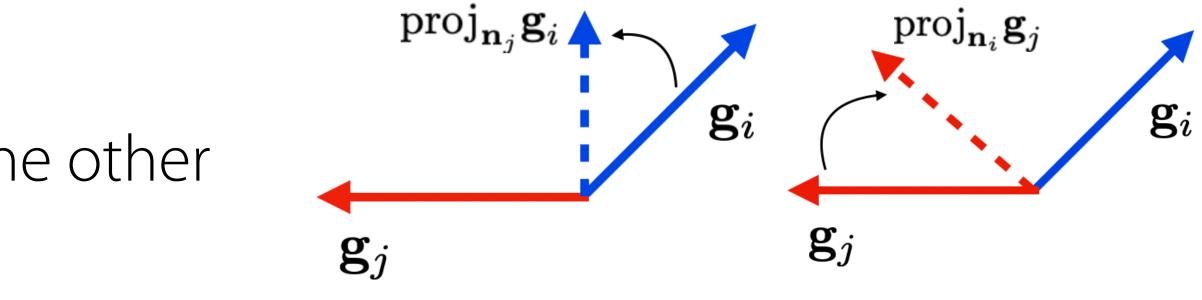
Algorithm:

If two gradients conflict: project each onto the normal plane of the other

Else: leave them alone

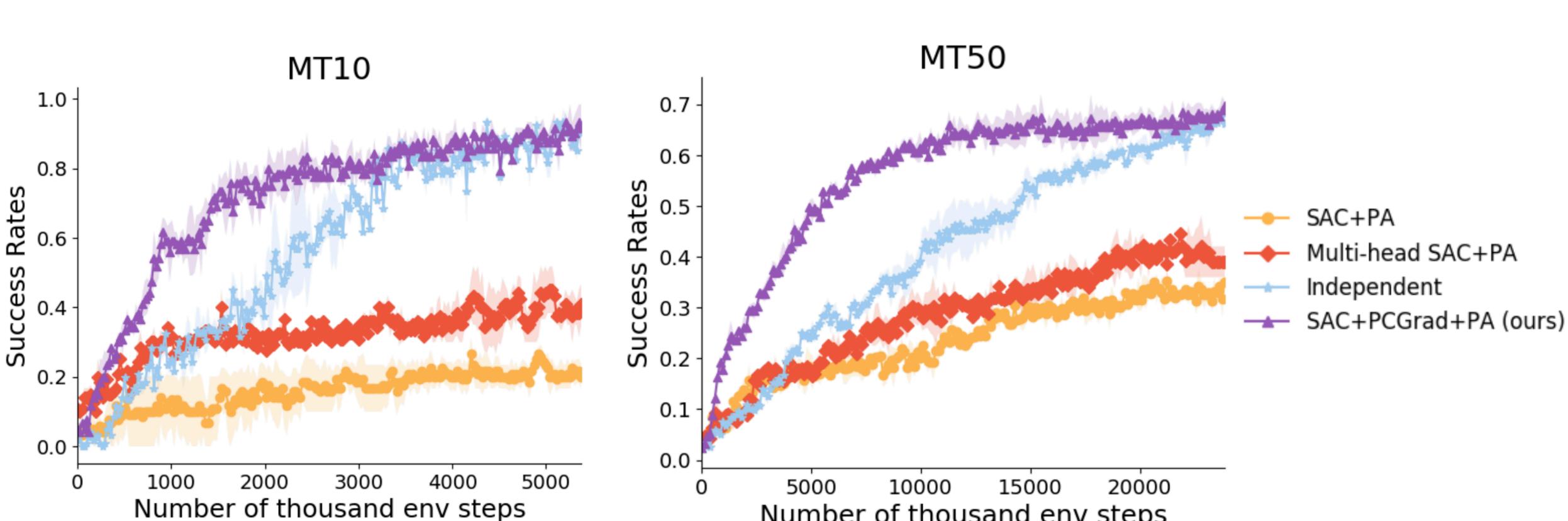


TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning. '19



i.e. project conflicting gradients "PCGrad"

Multi-Task RL on Meta-World:



TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning. '19

Number of thousand env steps

Multi-Task CIFAR-100

	% accuracy
task specific-1-fc (Rosenbaum et al., 2018)	42
task specific-all-fc (Rosenbaum et al., 2018)	49
cross stitch-all-fc (Misra et al., 2016b)	53
routing-all-fc + WPL (Rosenbaum et al., 2019)	74.7
independent	67.7
PCGrad (ours)	
routing-all-fc + WPL + PCGrad (ours)	11.5

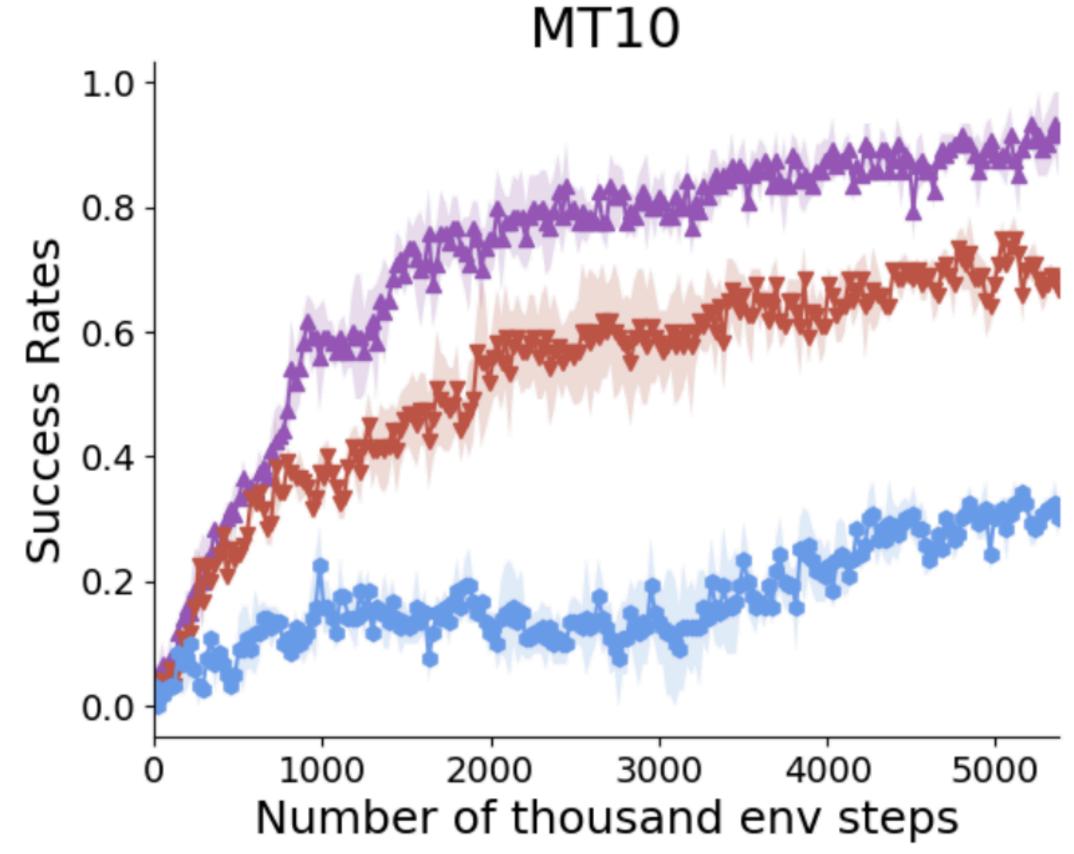
Multi-Task NYUv2

			Segm	entation	Depth		Surface Normal				
#P.	Architecture Weighting	(Highe mIoU	er Better) Pix Acc	(Lower Abs Err		0	Distance r Better) Median		Within t° gher Bet 22.5		
≈3	Cross-Stitch [‡]	Equal Weights Uncert. Weights* DWA [†] , $T = 2$	14.71 15.69 16.11	50.23 52.60 53.19	0.6481 0.6277 0.5922	0.2871 0.2702 0.2611	33.56 32.69 32.34	28.58 27.26 26.91	20.08 21.63 21.81	40.54 42.84 43.14	51.97 54.45 54.92
1.77	MTAN [†]	Equal Weights Uncert. Weights* DWA [†] , $T = 2$	17.72 17.67 17.15	55.32 55.61 54.97	0.5906 0.5927 0.5956	0.2577 0.2592 0.2569	31.44 31.25 31.60	25.37 25.57 25.46	23.17 22.99 22.48	45.65 45.83 44.86	57.48 57.67 57.24
1.77	MTAN [†] + PCGrad (ours)	Uncert. Weights*	20.17	56.65	0.5904	0.2467	30.01	24.83	22.28	46.12	58.77

TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning. '19

+ also helps multi-task **supervised** learning + complementary to multi-task architectures

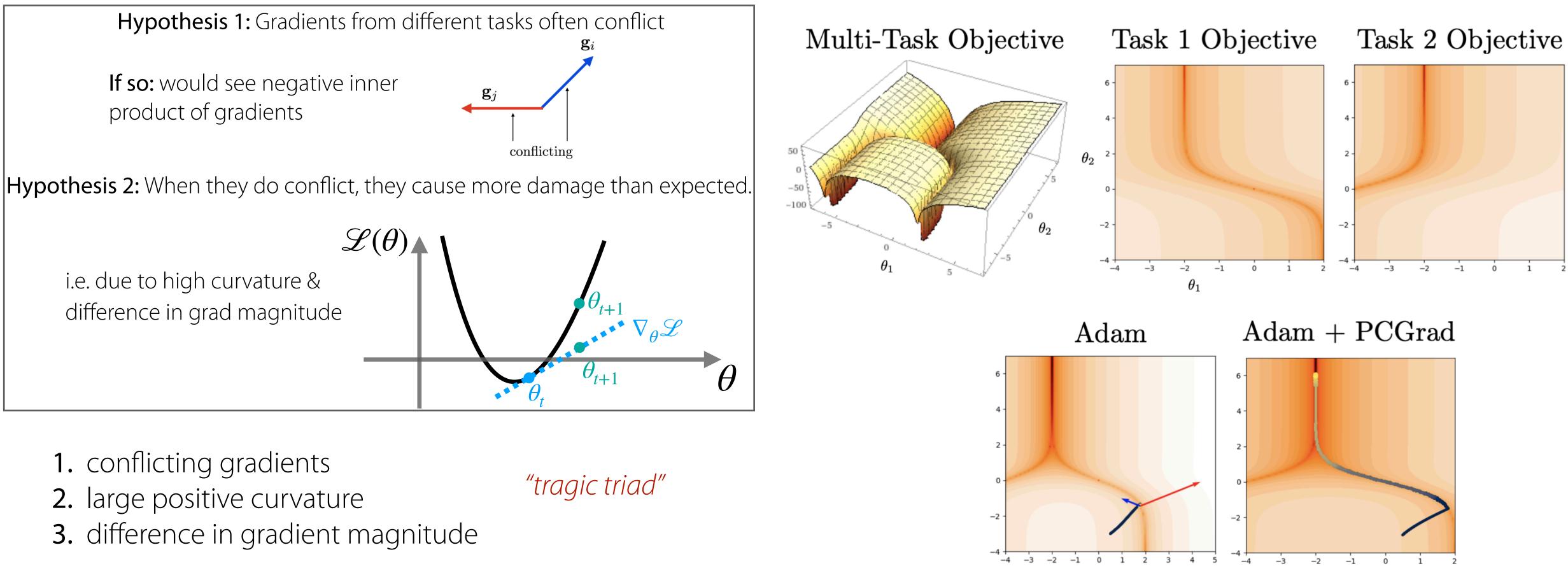
Why does it work? (Part 1)



TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning. '19

SAC+PA+PCGrad SAC+PA+PCGrad dir SAC+PA+PCGrad mag

Why does it work? (Part 2)



Is PCGrad *provably* better under these three conditions?

TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning. '19

Are these three conditions actually *why* we see improvements on large-scale problems?

"tragic triad"

- 1. conflicting gradients
- 2. large positive curvature
- **3.** difference in gradient magnitude

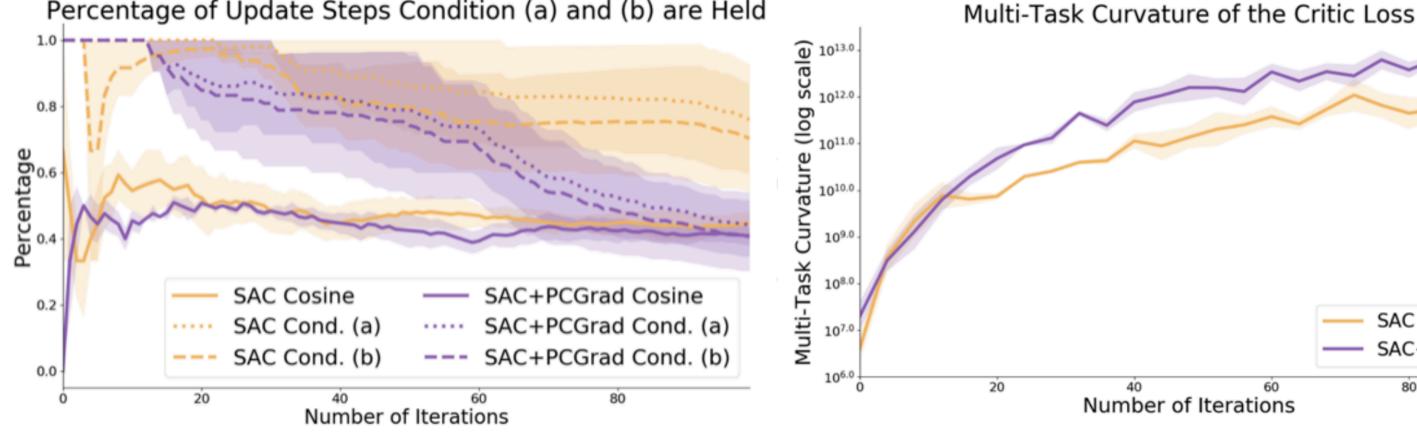
Is PCGrad *provably* better under these three conditions?

short answer: yes, if large enough conflict, curvature, gradient magnitude difference (for two tasks)

long answer:

Theorem 2. Suppose \mathcal{L} is differentiable and the gradient of \mathcal{L} is Lipschitz continuous with constant L > 0. Let θ^{MT} and θ^{PCGrad} be the parameters after applying one update to θ with \mathbf{g} and PCGrad-modified gradient \mathbf{g}^{PC} respectively, with step size t > 0. Moreover, assume $\mathbf{H}(\mathcal{L}; \theta, \theta^{MT}) \geq \ell \|\mathbf{g}\|_2^2$ for some constant $\ell \leq L$, i.e. the multi-task curvature is lower-bounded. Then $\mathcal{L}(\theta^{PCGrad}) \leq \mathcal{L}(\theta^{MT})$ if

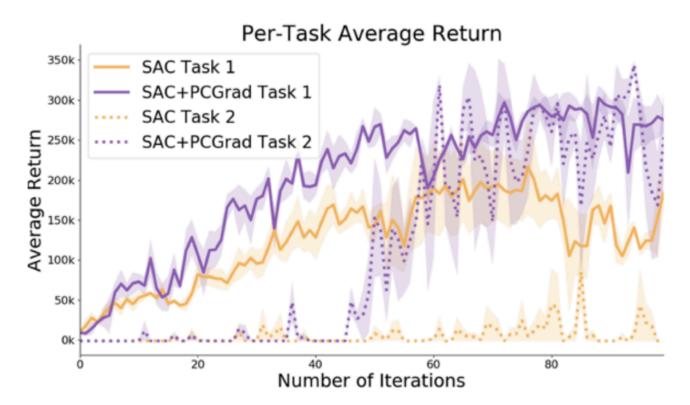
(a) $\cos \phi_{12} \leq -\Phi(\mathbf{g}_1, \mathbf{g}_2)$, (b) $\ell \geq \xi(\mathbf{g}_1, \mathbf{g}_2)L$, and (c) $t \geq \frac{2}{\ell - \xi(\mathbf{g}_1, \mathbf{g}_2)L}$. *Proof.* See Appendix B.



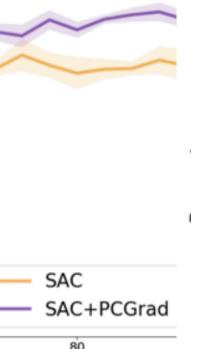
TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning. '19

Why does it work? (Part 2)

Are these three conditions actually *why* we see improvements on large-scale problems?



Percentage of Update Steps Condition (a) and (b) are Held



3. Can we scale meta-learning to broad task distributions?

Lack of good benchmarks

Optimization challenges

Remaining questions:

- Scaling to **broad task distributions** is hard, can't be taken for granted
 - —> Meta-World with broad, dense task distribution scaling primarily hindered by optimization challenges in MTL
 - —> three conditions seem to plague MTL, MTRL a solution: project conflicting gradients (PCGrad)

Does this solution translate back to meta-learning? Is this problem unique to multi-task learning?

Takeaways

(and how we might regularize it away) meta regularization meta overfitting controls information flow memorize training functions f_i regularizes description length of meta-parameters

2. A peculiar yet ubiquitous problem in meta-learning corresponding to tasks in your meta-training dataset

3. Can we scale meta-learning to broad task distributions?

Lack of good benchmarks —> Meta-World with broad, dense task distribution scaling primarily hindered by optimization challenges in MTL —> three conditions seem to plague MTL, MTRL Optimization challenges a solution: project conflicting gradients (PCGrad)

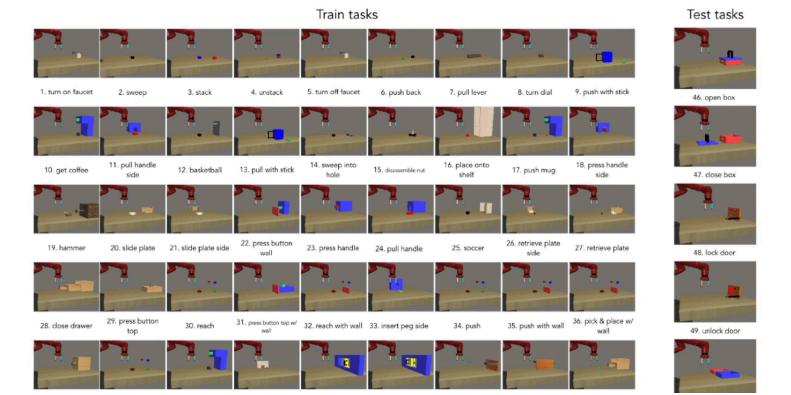
Want to Learn More?

Working on Meta-RL?

Collaborators

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. '19 TYu, D Quillen, Z He, R Julian, K Hausman, C Finn, S Levine. Meta-World. CoRL '19 TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning. (19)

CS330: Deep Multi-Task & Meta-Learning Lecture videos online!



Try out the Meta-World benchmark

