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How did you accomplish this?

Through previous experience.



How might you get a machine to accomplish this task?

Modeling image formation

Geometry Fewer human priors,
more data-driven priors
SIFT features, HOG features + SVM ]
. . Greater success.
Fine-tuning from ImageNet features *
Domain adaptation from other painters

[

Can we explicitly learn priors from previous experience
that lead to efficient downstream learning?

Can we learn to learn?



Qutline

1. Brief overview of meta-learning

2. A peculiar yet ubiquitous problem in meta-learning
(and how we might regularize it away)

3. Can we scale meta-learning to broad task distributions?



How does meta-learning work? An example.

Given 1 example of 5 classes: Classify new examples

training data Ds,..in testset Xtest,



How does meta-learning work? An example.

training

meta-training
classes

meta-testing 7. ..+

training data D;,.in, test set Xtest



How does meta-learning work?

(Hochreiter et al. 91, Santoro et al. 16, many others)



How does meta-learning work?
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(Maclaurin et al. 15, Finn et al. '17, many others)



Can we learn a representation under which RL is fast and efticient?

after 1 gradient step after 1 gradient step

after MAML training (forward reward) (backward reward)

-
-

— meta-learning — meta-learning — meta-learning
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Finn, Abbeel, Levine. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. ICML17



Can we learn a representation under which imitation is fast and efficient?

= input demo resulting policy

Targets Objects
subset of

training objects

Holding
Targets Objects

held-out test objects [real-time execution]
Finn*, Yu*, Zhang, Abbeel, Levine. One-Shot Visual Imitation Learning via Meta-Learning. CoRL"17




The Bayesian perspective

0 __,O ,O meta-learning <~> learning priors p(¢ | @) from data

(Grant et al. "18, Gordon et al. 18, many others)



Qutline

1. Brief overview of meta-learning

2. A peculiar yet ubiquitous problem in meta-learning
(and how we might regularize it away)

3. Can we scale meta-learning to broad task distributions?



How we construct tasks for meta-learning.

Randomly assign class labels to image classes for each task  —> Tasks are mutually exclusive.

Algorithms must use training data to infer label ordering.



What if label order is consistent?

Tasks are non-mutually exclusive: a single function can solve all tasks.

The network can simply learn to classify inputs, irrespective of D¢,



The network can simply learn to classity inputs, irrespective of i,

vl




What if label order is consistent?

For new image classes: cant make
predictions w/0 D,

NME Omniglot 20-way 1-shot 20-way S-shot

training data Dirain test set Xtest MAML 7802% 507 (2.9%




s this a problem?

~

- No: for image classification, we can just shuffle labels*

- No, it we see the same image classes as training (& don't need to adapt at
meta-test time)

- But, yes, it we want to be able to adapt with data for new tasks.




Another example

‘close drawer”

meta-training T

‘close box”

,Eest

T you tell the robot the task goal, the robot can ignore the trials.

TYu, D Quillen, Z He, R Julian, K Hausman, C Finn, S Levine. Meta-World. CoRL 19



Another example

Task training data Task test data

45° 108° 88’ 350° 15° 312°
:
124° 30° 244° 15° 202° 77

172° 40° 240° 76° g ?

Model can memorize the canonical orientations of the training objects.

Meta-training

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19



Can we do something about it?



If tasks mutually exclusive: single function cannot solve all tasks

(i.e. due to label shuffling, hiding information)

If tasks are non-mutually exclusive: single function can solve all tasks

multiple solutions to the ts tr _ts
. y~ = fo(D;,x7)
meta-learning problem

One solution: memorize canonical pose info in @ & ignore S’th.r

Another solution:  carry no info about canonical pose in 8, acquire from QZ}T

An entire spectrum of solutions based on how information flows.

Suggests a potential approach: control information flow.

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19



If tasks are non-mutually exclusive: single function can solve all tasks

multiple solutions to the ts _ tr _.ts
_ - y = f9 (Dz y L )
meta-learning problem

One solution: memorize canonical pose info in @ & ignore @}r

Another solution:  carry no info about canonical pose in 8, acquire from S/Zfr

An entire spectrum of solutions based on how information flows.

Meta-regularization one option: max I(§1q, Dir | Xt)

minimize meta-training loss + information in @
Zz (H’ 2 meta—tmin) +:BD KL(q (‘99 ‘9/49 Ha) ”p (‘9))

Places precedence on using information from 9, over storing info in €.

Can combine with your favorite meta-learning algorithm.

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19



Omniglot without label shuffling:  "non-mutually-exclusive” Omniglot

NME Omniglot 20-way 1-shot 20-way 5-shot
MAML 7.8 (0.2)% 50.7 (22.9)%
TAML 9.6 (2.3)% 67.9 (2.3)%

MR-MAML (W) (ours) 83.3 (0.8)% 94.1 (0.1)%

On pose prediction task:

TAM

MR-MAML(W MR-CNP(W
'1I;a8°sk traini;msg data 'I:ask tes;gata Method MAML (OllI’S) ( ) CNP (OUI‘S)( )

MSE 539 (131) 226 (0.09) 848(0.12) 2.89 (0.18)

Meta-training

(and it's not just as simple as standard regularization)

124° 30° 244° 15° 202° [ & 4

CNP CNP + Weight Decay CNP + BbB MR-CNP (W) (ours)

R . 8.48 (0.12) 6.86 (0.27) 773 (0.82) 2.89 (0.18)

- Jamal & Qi. Task-Agnostic Meta-Learning for Few-Shot Learning. CVPR'19

Yin,

‘ucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR"19



Does meta-regularization lead to better generalization?

Let P(0) be an arbitrary distribution over @ that doesn't depend on the meta-training data.
(eg. P(0) = #(0;0,1))

For MAML, with probability at least 1 — o,

1
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error meta-training set

K —1)

/

1

2(n —1

)) \/I)KL(JJ(930u'00)wa
W

meta-regularization

log

n(K + 1)

v,

With a Taylor expansion of the RHS + a particular value of f —> recover the MR MAML objective.

Proof: draws heavily on Amit & Meier'18

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19
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2. A peculiar yet ubiquitous problem in meta-learning
(@and how we might regularize it away)

Intermediate Takeaways

meta overfitting — standard overfitting
memorize training functions f; memorize training datapoints (x;, ;)
corresponding to tasks in your meta-training dataset iN your training dataset
meta reqgularization standard regularization

controls information flow / regularize hypothesis class

regularizes description length
of meta-parameters

(though not always for DNNs)

Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. ICLR'19



Qutline

1. Brief overview of meta-learning

2. A peculiar yet ubiquitous problem in meta-learning
(and how we might regularize it away)

3. Can we scale meta-learning to broad task distributions?



Has meta-learning accomplished our goal of making adaptation fast?

Sort of. ..

Can adapt to: - New opjects

- new goal velocities

- New object categories

Can we adapt to entirely new tasks or datasets?



Can we adapt to entirely new tasks or datasets?

AR

meta-train task
distribution distribution

y 9 —> Need broad distribution of tasks
meta-test task for meta-training

Can we look to RL benchmarks?
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Brockman et al. OpenAl Gym. 2016 Bellemare et al. Atari Learning Fan et al. SURREAL: Open-Source Reinforcement Learning
Environment. 2016 Framework and Robot Manipulation Benchmark. CoRL 2018




Train tasks Test tasks

ourdesiderate R [ [ [

1. turn on faucet 2. sweep 3. stack 4. unstack 5. turn off faucet 6. push back 7. pull lever 8. turn dial 9. push with stick

T

shaped reward function &

46. open box

11. pull handle

o 14. sweep into AL 16. place onto 18. press handle

hole shelf side 47. close box

SUCCess metrics
26. retrieve plate

(to allow us to focus on multi- -

task / meta-RL component) '
e Y R U [ N

10. get coffee 12. basketball 13. pull with stick 17. push mug

22. press button

19. hammer 20. slide plate  21. slide plate side Wil

23. press handle 24. pull handle 25. soccer 27. retrieve plate

48. lock door

e n\/l rO n m e nt 28. close drawer 23 priispbutton 30. reach 31. p'ess‘::rlton topw/ 39 reach with wall  33. insert peg side 34. push 35. push with wall L pick\f;lfl)lace L 49. unlock door
| K-

37. press button 38. pick & place 39. pull mug 40. unplug peg 41. close window  42. open window 43. open door 44. close door 45. open drawer

50. pick bin

Meta-World Benchmark

TYu, D Quillen, Z He, R Julian, K Hausman, C Finn, S Levine. Meta-World. CoRL'19



Results: Meta-learning algorithms seem to struggle. ..

MLA45
Methods meta-train  meta-test
MAML
RT 2
PEARL

...even on the 45 meta-training tasks!

Multi-task RL algorithms also struggle. ..

Methods MTS0
Multi-task PPO 8.98%
Multi-task TRPO 22.86%
Task embeddings 15.31%
Multi-task SAC 28.83%

Multi-task multi-head SAC 35.85%

TYu, D Quillen, Z He, R Julian, K Hausman, C Finn, S Levine. Meta-World. CoRL'19



Why the poor results?

Exploration challenge? All tasks individually solvable.
Data scarcity? All methods given budget with plenty of samples.
Limited model capacity? All methods plenty of capacity.
MT50

o
~

O
o

Training models independently
performs the best.

u
1

SAC
Independent

Success Rates
© o o o
N w NS

O
(-

O'O i T T T T
0 5000 10000 15000 20000

Number of thousand env steps

Our conclusion: must be an optimization challenge.



Prior literature on multi-task learning

Architectural solutions:

image cone cony pool cony cone pool cony cont conv pool cony conv conv pool cong cony con pool
Task Al [Task B| |Task C| Task- A
f f f specific 1]

| ayc rs conv : conv i
O —
*
=—j' |
7 conv | X
1 I
T conv : conv :

Shared B

T layers

. . Sluice Networks. Ruder, Bingel|, Multi-Task Attention Network. Liu,
Multi-head architectures

. / . /
Augenstein, Sogaard 17 Johns, Davison ‘18
conv2, pool2 convd  convd  convh, pools [e6 fe7 fc8
N Concatenation-based conditioning 5 =
condmon{ng simply concatenates the conditioning 5 E’r
representation representation to the input. : >
rL ——~ Th Iti d
Z l . thrz Lrj(;ua Illrsw Z: rs:ler @) e r . " M ml
S _ to produce the output. 8 . ! : N &
input > % § > output S frozen ; frozen : frozen : lea : lea : : ) E ) : ) e . E ,
g 8 L L] L] L] L] 2 2 ., Task T é g
— - o input . , . - : : : 9 : W v
w
FiLM: Visual Reasoning with a General Cross-Stitch Networks. Misra,

Deep Relation Networks. Long, Wang ‘15

Conditioning Layer. Perez et al."17 Shrivastava, Gupta, Hebert'16

Task weighting solutions:

T
: t ft nsh pt
min E c'L(0°",0")
Liow = ”’d;pthdepth T “'l\ankpt + Whnormals Lnormals eloshbT t=1

GradNorm. Chen et al."18 MT Learning as Multi-Objective Optimization. Sener & Koltun.19



Hypothesis 1: Gradients from different tasks often conflict

gi

If so: would see negative ¢ /

inner product of gradients I

conflicting

Hypothesis 2: When they do conflict, they cause more damage than expected.

Z(0)

.e. due to high curvature &
difference in grad magnitude

\
“
.
‘$
2

TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning.’19



Idea: try to avoid making other tasks worse, when taking gradient step

Algorithm:

If two gradients conflict:
project each onto the normal plane of the other

gi
Else:

leave them alone
g

non-conflicting

.e. project conflicting gradients

"PCGrad”

TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning.’19


https://files.slack.com/files-pri/T7SAV7LAD-FQWSC503W/download/image.png

Multi-Task RL on Meta-World:

MT10 MT50

1.0 -

SAC+PA

—&— Multi-head SAC+PA
Independent
—a— SAC+PCGrad+PA (ours)

Success Rates

0 1000 2000 3000 4000 5000 0 5000 10000 15000 20000
Number of thousand env steps Number of thousand env steps

TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning.’19



Multi-Task CIFAR-100

% accuracy
task specific-1-fc (Rosenbaum et al., 2018) 42 , . ,
task specific-all-fc (Rosenbaum et al., 2018) 49 + a‘SO h@‘ 0S mU‘U‘taSk SuperV|Sed \eamlﬂg
cross stitch-all-fc (Misra et al., 2016b) 53 . .
routing-all-fc + WPL (Rosenbaum et al,, 2019) |  74.7 + complementary to multi-task architectures
independent 67.7
PCGrad (ours) 71
routing-all-fc + WPL + PCGrad (ours) 77.5
Multi-Task NYUv2
Segmentation Depth Surface Normal
: S , Angle Distance Within ¢°
#P. Architecture Weighting (Higher Better) (Lower Better) (Lower Better) (Higher Better)
mloU Pix Acc AbsErr Rel Eir Mean Median 11.25 22.5 30

Equal Weights 14.71 50.23 0.6481 0.2871 33.56 28.58 20.08 40.54 51.97
~3 Cross-Stitch* Uncert. Weights™ 15.69  52.60 0.6277 0.2702 32.69 27.26 21.63 42.84 5445

DWAT, T = 2 16.11 53.19 0.5922 0.2611 3234 2691 21.81 43.14 54.92

Equal Weights 17.72 5532 05906 0.2577 3144 25.37 |23.17| 45.65 57.48
1.77 MTAN' Uncert. Weights™ 17.67  55.61 0.5927 0.2592 31.25 2557 2299 4583 57.67

DWAT, T = 2 17.15 5497 05956 0.2569 31.60 2546 2248 4486 57.24
1.77 MTANT+ PCGrad (ours) Uncert. Weights™ [20.17| |[56.65| [0.5904| [0.2467| [30.01| [24.83| 22.28 |46.12| |58.77

TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning.’19




Why does it work?

(Part 1)
MT10
1.0~ —a— SAC+PA+PCGrad
—»— SAC+PA+PCGrad dir

0.8 - —e— SAC+PA+PCGrad mag
v
Q
©
m 0.6 7
v
O
9 04 7
)
-
V!

0.2 -

0.0

0 1000 2000 3000 4000 5000
Number of thousand env steps

TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning.’19



Why does it work?

Hypothesis 1: Gradients from different tasks often conflict
gi

If so: would see negative inner . /|'

product of gradients < [

conflicting

Hypothesis 2: When they do conflict, they cause more damage than expected.

Z(0)

.e. due to high curvature &
difference in grad magnitude

1. conflicting gradients
2. large positive curvature
3. difference in gradient magnitude

“tragic triad”

s PCGrad provably better under these three conditions?

(Part 2)

Multi-Task Objective

Task 1 Objective

Task 2 Objective

4 -3 -2 -1 0 1 2 3 4 5 _a

Are these three conditions actual
improvements on large-scale

TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning.’19

-3 -2 -1 0 1 2

y why we see
oroblems?

-67

-131

=195

—-259

-323

-387

-451

=515

-580



‘tragic triad" Why does it work?

1. conflicting gradients
2. large positive curvature (Pa At 2)

3. difference in gradient magnitude

Are these three conditions actual
improvements on large-scale

Per-Task Average Return

s PCGrad provably better under these three conditions?

short answer: yes, if large enough conflict, w0l SACTask1
. ) ) w0k — SAC+PCGrad Task 1
curvature, gradient magnitude difference | ST
(for two tasks) g oo
long answer: ..
Theorem 2. Suppose L is differentiable and the gradient of S0k Y
L is Lipschitz continuous with constant L > 0. Let 0! and g it " ""Ato .
9rC6rad pe the parameters after applying one update to 0 NINTIEGE OF IORrations
with g and PCGrad-modified gradient gF'¢ respectively, with .
P t f Update St Condit d(b Held
step size t > 0. Moreover, assume H(L;0,6MT) > /| g||3 1.ofr.c_e9_a\ge of Update Steps Cancltion {a) and (5) are He .
for some constant { < L, i.e. the multi-task curvature is \\.\,,_, ......... )
lower-bounded. Then L(07C¢™4) < L(6MT) if o TeeemslinnaL |

—
(=]
-

=
o
4

Percentage
? :.
/
J
!
]
!
)
f’ |
Multi-Task Curvature (log scale)

(a) cos 12 < —P(g1,82),
(b) £ > &(g1,82)L, and

—

o
—
o

y why we see

oroblems?

Multi-Task Curvature of the Critic Loss

(c) t > 2 . o SAC Cosine —— SAC+PCGrad Cosine o
— t-&(g1,82)L SAC Cond. (a) -+ SAC+PCGrad Cond. (a) - SAC
Proof See Appendix B. ] . SAC Cond. (b)  ==- SAC+PCGrad Cond. (b) | —— SAC+PCGrad
‘ v 1O(:'QO 20 40 60 80

20 40 .6'0 80
Number of Iterations

(=}

TYu, S Kumar, A Gupta, S Levine, K Hausman, C Finn. Gradient Surgery for Multi-Task Learning.’19

Number of Iterations



3. Can we scale meta-learning to broad task distributions?

Scaling to broad task distributions is hard,
can't be taken for granted

Lack of good benchmarks —> Meta-World with broad, dense task distribution

scaling primarily hindered by optimization challenges in MTL

Optimization challenges —> three conditions seem to plague MTL, MTRL

a solution: project conflicting gradients (PCGrad)

.. : Does this solution translate back to meta-learning?
Remaining questions:

s this problem unigue to multi-task learning?



[akeaways

2. A peculiar yet ubiquitous problem in meta-learning
(@and how we might regularize it away)

meta regularization
controls information flow

regularizes description length
of meta-parameters

meta overfitting

memorize training functions f.
corresponding to tasks in your meta-training dataset

3. Can we scale meta-learning to broad task distributions?

Lack of good benchmarks —> Meta-World with broad, dense task distribution

scaling primarily hindered by optimization challenges in MTL

Optimization challenges —> three conditions seem to plague MTL, MTRL

a solution: project conflicting gradients (PCGrad)
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Yin, Tucker, Yuan, Levine, Finn. Meta-Learning without Memorization. 19

TYu, D Quillen, Z He, R Julian, KHausman, C Finn, S Levine. Meta-World. CoRL"19
TYu, S Kumar, A Gupta, S Levine, KHausman, C Finn. Gradient Surgery for Multi-Task Learning.'19



